If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1272x^2-424x+32=0
a = 1272; b = -424; c = +32;
Δ = b2-4ac
Δ = -4242-4·1272·32
Δ = 16960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16960}=\sqrt{64*265}=\sqrt{64}*\sqrt{265}=8\sqrt{265}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-424)-8\sqrt{265}}{2*1272}=\frac{424-8\sqrt{265}}{2544} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-424)+8\sqrt{265}}{2*1272}=\frac{424+8\sqrt{265}}{2544} $
| 8-5y=6-6y | | 3x+8+5x+2=90 | | 4x+31=6x+9 | | (4x+31)=(6x+9) | | x+7/8=-6 | | 0,2x+0.006x^2=50 | | (k+1/2)²=9/16 | | 3w+44=-7(w-2) | | (1/2)+x=-2 | | x^2+5^2=50 | | 8-0.4y=2.2-2y | | 3=-0.5+c | | )5(2y-1)=(y-4) | | 4p+2/5(10+2p)=8 | | 1/2+x=-2 | | 6c=-96 | | 10x-100+14=12 | | 3/8(4-8x)=2x-2/3(6-12x) | | -3x-2x-8x=-4-3/2 | | 4(10x-2)=193 | | 13x=11/2 | | 13x=51/2 | | x^2+4x+360=0 | | |3x+19|=13 | | .75y+.5=7 | | 3/4y+.5=7 | | 1/x=-0.021 | | 3y/4+1/2=7 | | 1/x=0.004 | | 48/x=30 | | 7h-8=71 | | 5=3h+100h^2((3h+2h^2)/(3+2h√(1+2^2)))^(2/3)×(0,0006)×1/2 |